時間差分スキーム

この章では独立変数, 従属変数がともに 1 つの常微分方程式について考える. なぜなら 1 次元線形移流方程式も連立常微分方程式を解く問題に帰着されるからである.

7つの時間差分スキームを具体的な常微分方程式にあてはめて,スキームの安定性と位相の振る舞いについて考える.この章で取り上げる常微分方程式は,振動方程式と摩擦方程式である.

$$\frac{dU}{dt} + i\omega U = 0, (1)$$

$$\frac{dU}{dt} + \alpha U = 0. (2)$$

時間差分スキームの定義

以下のような常微分方程式を考える.

$$\frac{dU}{dt} = f(U, t). (3)$$

微分方程式 (3) の解を U(t) とし, $U(n\Delta t)$ における近似的な解を U^n と表記する. 時間差分スキームを適用した差分式が,

$$U^{n+1} = \sum_{k=1}^{N} a_{k-1} U^{n-k+1} + \Delta t f(U^{n+1}, U^n, U^{n-1}, \dots, U^{n-N+1},$$

$$(n+1)\Delta t, n\Delta t, (n-1)\Delta t, \dots, (n-N+1)\Delta t)$$
(4)

と 定数 a_k , (3) の f を離散化した既知の関数 f を用いて書けるとき, これを N 段階 (N-step) スキー Δ^1) という. すなわち, 時刻 $t=(n+1)\Delta t$ の U^{n+1} を求める差分式に, いくつの異なる時刻の U^n が現れているか, ということである. f の中に U^{n+1} を含まない差分スキー Δ を陽的なスキー Δ (explicit scheme) といい, 含む差分スキー Δ を陰的なスキー Δ (implicit scheme) という. また, 段数 (stage) とは U^n から U^{n+1} を計算するのに関数 f を何回計算するかを表す.

1段階 (1-step) スキーム

1 段階スキームとは, U^{n+1} を U^n を用いて求めるスキームである. 本節で扱う 1 段階スキームは、

- オイラースキーム (前進差分スキーム)
- 後退差分スキーム
- 台形スキーム
- ・ 松野スキーム (前進・後退スキーム)
- ホインスキーム (修正オイラースキーム)

の5つである.この5つのスキームをそれぞれ紹介し、その誤差を考察する.

オイラースキーム(前進差分スキーム)

$$\frac{U^{n+1} - U^n}{\Delta t} = f^n, (5)$$

すなわち,

$$U^{n+1} = U^n + \Delta t f^n. (6)$$

ただし, $f^n=f(U^n,n\Delta t)$ である. オイラースキームの打ち切り誤差 $\varepsilon_{オイラー}$ は次のとおりである. まず $U((n+1)\Delta t)$ を $n\Delta t$ のまわりでテイラー展開して,

$$U((n+1)\Delta t) = U(n\Delta t) + \frac{dU}{dt} \Big|_{n\Delta t} \Delta t + \frac{1}{2} \left. \frac{d^2U}{dt^2} \right|_{n\Delta t} (\Delta t)^2 + \cdots$$
 (7)

¹⁾ N レベル (N-level) スキームということもある.

より,

$$\varepsilon_{\vec{A}\vec{A}\vec{P}} = \frac{U((n+1)\Delta t) - U(n\Delta t)}{\Delta t} - f(U(n\Delta t), n\Delta t)
= \frac{dU}{dt} \Big|_{n\Delta t} + \frac{1}{2} \frac{d^2U}{dt^2} \Big|_{n\Delta t} \Delta t + \dots - f(U(n\Delta t), n\Delta t)
= \frac{1}{2} \frac{d^2U}{dt^2} \Big|_{n\Delta t} \Delta t + \dots .$$
(8)

ゆえに,

$$\varepsilon_{AA5-} = O(\Delta t). \tag{9}$$

ここで、 $U(n\Delta t)$ は真値である.

後退差分スキーム

$$\frac{U^{n+1} - U^n}{\Delta t} = f^{n+1},$$

$$U^{n+1} = U^n + \Delta t f^{n+1}.$$
(10)

但し, $f^{n+1}=f(U^{n+1},(n+1)\Delta t)$ である. 後退差分スキームの打ち切り誤差 $\varepsilon_{$ 後退 は次の通りである.

$$\varepsilon_{\text{BB}} = \frac{U((n+1)\Delta t) - U(n\Delta t)}{\Delta t} - f(U((n+1)\Delta t), (n+1)\Delta t)$$

$$= \frac{1}{\Delta t} \left[U^{n+1} - \left(U^{n+1} - \frac{dU}{dt} \Big|_{(n+1)\Delta t} \Delta t + \frac{1}{2} \left. \frac{d^2 U}{dt^2} \Big|_{(n+1)\Delta t} (\Delta t)^2 - \cdots \right) \right]$$

$$- f(U((n+1)\Delta t), (n+1)\Delta t)$$

$$= -\frac{1}{2} \left. \frac{d^2 U}{dt^2} \Big|_{(n+1)\Delta t} \Delta t + \cdots \right]$$
(11)

ゆえに,

$$\varepsilon_{\text{He}} = O(\Delta t).$$
 (12)

(10) 式は求めたい値である U^{n+1} 自体が右辺に含まれている. よって後退差分スキームは 陰的なスキームである.

台形スキーム

$$\frac{U^{n+1} - U^n}{\Delta t} = \frac{1}{2} \left(f^n + f^{n+1} \right),$$

$$U^{n+1} = U^n + \frac{1}{2} \Delta t \left(f^n + f^{n+1} \right).$$
(13)

台形スキームの打ち切り誤差 $\varepsilon_{
m ehr}$ は次の通りである.

$$\varepsilon_{\text{AFF}} = \frac{U((n+1)\Delta t) - U(n\Delta t)}{\Delta t} - \frac{1}{2} \left(f(U(n\Delta t), n\Delta t) + f(U((n+1)\Delta t), (n+1)\Delta t) \right) \\
= \frac{1}{2} \frac{U^{n+1} - U^n}{\Delta t} - \frac{1}{2} f(U(n)\Delta t), n\Delta t) \\
+ \frac{1}{2} \frac{U^{n+1} - U^n}{\Delta t} - \frac{1}{2} f(U((n+1)\Delta t), (n+1)\Delta t). \tag{14}$$

ここで右辺第1項及び第2項は ε_{+1} ラー、 $\varepsilon_{\&\&\&}$ に等しいので、

$$\varepsilon_{\text{AH}} = \frac{\left(\varepsilon_{\text{AA}5-} + \varepsilon_{\text{\&B}}\right)}{2} \\
= \frac{1}{2} \left\{ \left(\frac{1}{2} \frac{d^2 U}{dt^2} \Big|_{n\Delta t} \Delta t + \frac{1}{3!} \frac{d^3 U}{dt^3} \Big|_{n\Delta t} (\Delta t)^2 + \cdots \right) \\
+ \left(-\frac{1}{2} \frac{d^2 U}{dt^2} \Big|_{(n+1)\Delta t} \Delta t + \frac{1}{3!} \frac{d^3 U}{dt^3} \Big|_{(n+1)\Delta t} (\Delta t)^2 \cdots \right) \right\} \tag{15}$$

ここで $\left.\frac{d^2U}{dt^2}\right|_{n\Delta t}-\left.\frac{d^2U}{dt^2}\right|_{(n+1)\Delta t}$ は高々 Δt 程度だと見積もられるため, 2 階微分の項は $O(\Delta t^2)$ となり, 結局

$$\varepsilon_{\widehat{\ominus}\mathbb{B}} = \frac{1}{2} \left(\frac{d^2 U}{dt^2} \bigg|_{n\Delta t} - \left. \frac{d^2 U}{dt^2} \bigg|_{(n+1)\Delta t} \right) \Delta t + \frac{1}{3!} \left(\left. \frac{d^3 U}{dt^3} \bigg|_{n\Delta t} + \left. \frac{d^3 U}{dt^3} \bigg|_{(n+1)\Delta t} \right) (\Delta t)^2 + \cdots \right)$$
(16)

$$= O(\Delta t^{2}) + \frac{1}{3!} \left(\frac{d^{3}U}{dt^{3}} \bigg|_{t = \Delta t} + \frac{d^{3}U}{dt^{3}} \bigg|_{(t = 1)\Delta t} \right) (\Delta t)^{2} + \cdots$$
(17)

$$= O(\Delta t^2). (18)$$

台形スキームは (13) 式も求めたい値である U^{n+1} 自体が右辺に含まれている. よって台形 スキームは 2 次の精度を持つ陰的なスキームである.

松野スキーム (前進・後退スキーム)

松野スキームは 1-step, 2-stage (1 段階 2 段) のスキームである.

$$U^* = U^n + \Delta t f^n,$$

$$U^{n+1} = U^n + \Delta t f^*.$$
 (19)

但し, $f^*=f(U^*,(n+1)\Delta t)$ である. f=f(U(t),t) であることに注意して, f^* と U^{n+1} を $t=n\Delta t$ の周りでテイラー展開すると

$$f^* = f^n + \frac{df(U(t), t)}{dt} \bigg|_{n\Delta t} \Delta t + O(\Delta t^2)$$
 (20)

$$= f^{n} + \left(\frac{\partial f}{\partial U} \left. \frac{dU}{dt} \right|_{n\Delta t} + \left. \frac{\partial f}{\partial t} \right|_{n\Delta t}\right) \Delta t + O(\Delta t^{2}), \tag{21}$$

$$U^{n+1} = U^n + \left. \frac{dU}{dt} \right|_{n\Delta t} \Delta t + \frac{1}{2} \left. \frac{d^2 U}{dt^2} \right|_{n\Delta t} \Delta t^2 + O(\Delta t^3)$$
 (22)

であるため、松野スキームの打ち切り誤差 $\varepsilon_{\text{松野}}$ は次のとおりである.

$$\varepsilon_{\text{KPF}} = \frac{U^{n+1} - U^n}{\Delta t} - f^* \qquad (23)$$

$$= \frac{dU}{dt} \Big|_{n\Delta t} + \frac{1}{2} \frac{d^2U}{dt^2} \Big|_{n\Delta t} \Delta t + O(\Delta t^2) - \left[f^n + \left(\frac{\partial f}{\partial U} \frac{dU}{dt} \Big|_{n\Delta t} + \frac{\partial f}{\partial t} \Big|_{n\Delta t} \right) \Delta t + O(\Delta t^2) \right]$$
(24)

$$= \left[\frac{1}{2} \left. \frac{d^2 U}{dt^2} \right|_{n\Delta t} - \left(\left. \frac{\partial f}{\partial U} \frac{dU}{dt} \right|_{n\Delta t} + \left. \frac{\partial f}{\partial t} \right|_{n\Delta t} \right) \right] \Delta t + O(\Delta t^2)$$
(25)

 $= O(\Delta t). (26)$

ゆえに、松野スキームは1次の精度をもつ.

ホインスキーム

修正オイラースキームとも、2次のルンゲクッタスキームとも呼ばれる.

$$U^* = U^n + \Delta t f^n,$$

$$U^{n+1} = U^n + \frac{1}{2} \Delta t (f^n + f^*).$$
 (27)

但し, $f^* = f(U^*, (n+1)\Delta t)$ である. ホインスキームの誤差 $\varepsilon_{\pi + 1}$ は松野スキームの時と同様にして,

$$f^* = f^n + \left(\frac{\partial f}{\partial U} \frac{dU}{dt}\Big|_{n\Delta t} + \left.\frac{\partial f}{\partial t}\right|_{n\Delta t}\right) \Delta t + O(\Delta t^2),\tag{28}$$

$$U^{n+1} = U^n + \frac{dU}{dt} \bigg|_{n\Delta t} \Delta t + \frac{1}{2} \left. \frac{d^2U}{dt^2} \right|_{n\Delta t} \Delta t^2 + O(\Delta t^3)$$
 (29)

なので,
$$\frac{d}{dt}f(U,t) = \frac{\partial f}{\partial U}\frac{dU}{dt} + \frac{\partial f}{\partial t}$$
 と $\frac{dU}{dt} = f$ に注意すると,

$$\varepsilon_{\pm d \, >} = \frac{U^{n+1} - U^n}{\Delta t} - \frac{1}{2} (f^n + f^*) \\
= \frac{dU}{dt} \Big|_{n\Delta t} + \frac{1}{2} \frac{d^2 U}{dt^2} \Big|_{n\Delta t} \Delta t + O(\Delta t^2) - \left[f^n + \frac{1}{2} \left(\frac{\partial f}{\partial U} \frac{dU}{dt} \Big|_{n\Delta} + \frac{\partial f}{\partial t} \Big|_{n\Delta t} \right) \Delta t + O(\Delta t^2) \right] \\
= \frac{1}{2} \left[\frac{d^2 U}{dt^2} \Big|_{n\Delta t} - \left(\frac{\partial f}{\partial U} \frac{dU}{dt} \Big|_{n\Delta t} + \frac{\partial f}{\partial t} \Big|_{n\Delta t} \right) \right] \Delta t + O(\Delta t^2) \\
= \frac{1}{2} \frac{d}{dt} \left(\frac{dU}{dt} - f \right) \Big|_{n\Delta t} \Delta t + O(\Delta t^2) \\
= O(\Delta t^2). \tag{30}$$

ゆえにホインスキームは2次の精度をもつ.

2 段階 (2-step) スキーム

 U^{n+1} を求める式に 2 つの U^i $(i \le n)$ が現れるスキーム. ただし, 1 ステップ目の計算 $(U^0$ から U^1 を求めるとき) には使えない. 本節では,

- リープフロッグスキーム
- アダムス-バッシュフォーススキーム

の2つのスキームを紹介し、それぞれの精度について考察する.

リープフロッグスキーム (Leapfrog scheme)

$$U^{n+1} = U^{n-1} + 2\Delta t f^n (31)$$

但し、 $f^n = f(U^n, n\Delta t)$ である. 打ち切り誤差は、

$$U^{n+1} = U^n + \left. \frac{dU}{dt} \right|_{n\Delta t} \Delta t + \frac{1}{2} \left. \frac{d^2U}{dt^2} \right|_{n\Delta t} (\Delta t)^2 + \frac{1}{3!} \left. \frac{d^3U}{dt^3} \right|_{n\Delta t} (\Delta t)^3 + O(\Delta t^4), \quad (32)$$

$$U^{n-1} = U^n - \frac{dU}{dt} \bigg|_{n\Delta t} \Delta t + \frac{1}{2} \left. \frac{d^2U}{dt^2} \right|_{n\Delta t} (\Delta t)^2 - \frac{1}{3!} \left. \frac{d^3U}{dt^3} \right|_{n\Delta t} (\Delta t)^3 + O(\Delta t^4)$$
(33)

より,

$$\varepsilon_{leap} = \frac{U^{n+1} - U^{n-1}}{2\Delta t} - f^n$$

$$= \frac{dU}{dt} \Big|_{n\Delta t} + \frac{1}{3!} \frac{d^3U}{dt^3} \Big|_{n\Delta t} (\Delta t)^2 + O(\Delta t^4) - f^n$$

$$= O(\Delta t^2). \tag{34}$$

アダムス-バッシュフォーススキーム (Adams-Bashforth scheme)

ここでは2次精度のアダムス-バッシュフォーススキームを紹介する.

$$U^{n+1} = U^n + \Delta t \left(\frac{3}{2} f^n - \frac{1}{2} f^{n-1} \right). \tag{35}$$

右辺第2項の段階数を増やすことで精度を上げることができる2). 打ち切り誤差は、

$$f^{n-1} = f^n - \left(\frac{\partial f}{\partial U} \frac{dU}{dt} \bigg|_{n\Delta t} + \left. \frac{\partial f}{\partial t} \right|_{n\Delta t} \right) \Delta t + O(\Delta t^2)$$
 (37)

より,

$$\varepsilon_{AB} = \frac{U^{n+1} - U^n}{\Delta t} - \left(\frac{3}{2}f^n - \frac{1}{2}f^{n-1}\right) \\
= \frac{dU}{dt}\Big|_{n\Delta t} + \frac{1}{2}\frac{d^2U}{dt^2}\Big|_{n\Delta t} \Delta t - \left\{f^n + \frac{1}{2}\left(\frac{\partial f}{\partial U}\frac{dU}{dt}\Big|_{n\Delta t} + \frac{\partial f}{\partial t}\Big|_{n\Delta t}\right) \Delta t + O(\Delta t^2)\right\} + O(\Delta t^2) \\
= \frac{1}{2}\frac{d}{dt}\left(\frac{dU}{dt} - f\right)\Big|_{n\Delta t} \Delta t + O(\Delta t^2) \\
= O(\Delta t^2).$$
(38)

$$u_j^{n+1} = u_j^n + \frac{\Delta t}{24} (55f^n - 59f^{n-1} + 37f^{n-2} - 9f^{n-3}).$$
 (36)

右辺第2項の段階数を増やすことで、4次以上の精度をもつスキームを作ることもできる.

²⁾ たとえば4次精度のものもある.4次精度のアダムス-バッシュフォーススキームは次のとおりである.

アダムス-バッシュフォーススキームは段階数と段数が一致するスキームである.

- スキームのまとめ -

1段階スキーム

オイラースキーム

$$U^{n+1} = U^n + \Delta t f^n, \tag{39}$$

$$f^n = (U^n, n\Delta t), \tag{40}$$

$$\varepsilon = O(\Delta t). \tag{41}$$

後退差分スキーム

$$U^{n+1} = U^n + \Delta t f^{n+1}, \tag{42}$$

$$f^{n+1} = (U^{n+1}, (n+1)\Delta t), \tag{43}$$

$$\varepsilon = O(\Delta t). \tag{44}$$

台形スキーム

$$U^{n+1} = U^n + \frac{1}{2}\Delta t \left(f^n + f^{n+1} \right), \tag{45}$$

$$f^n = f(U^n, n\Delta t), \tag{46}$$

$$\varepsilon = O(\Delta t^2). \tag{47}$$

松野スキーム

$$U^* = U^n + \Delta t f^n, \tag{48}$$

$$U^{n+1} = U^n + \Delta t f^*, \tag{49}$$

$$f^* = (U^*, (n+1)\Delta t), \tag{50}$$

$$\varepsilon = O(\Delta t). \tag{51}$$

ホインスキーム

$$U^* = U^n + \Delta t f^n, \tag{52}$$

$$U^{n+1} = U^n + \frac{1}{2}\Delta t(f^n + f^*), \tag{53}$$

$$f^* = (U^*, (n+1)\Delta t), \tag{54}$$

$$\varepsilon = O(\Delta t^2). \tag{55}$$

2段階スキーム

リープフロッグスキーム

$$U^{n+1} = U^{n-1} + 2\Delta t f^n, (56)$$

$$f^n = f(U^n, n\Delta t), (57)$$

$$\varepsilon = O(\Delta t^2). \tag{58}$$

アダムス-バッシュフォーススキーム

$$U^{n+1} = U^n + \Delta t \left(\frac{3}{2} f^n - \frac{1}{2} f^{n-1} \right), \tag{59}$$

$$\varepsilon = O(\Delta t^2). \tag{60}$$